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Abstract: Chronic pancreatitis (CP) is characterized by pancreatic inflammation, fibrosis, and ab-
dominal pain that is challenging to treat. Mesenchymal stromal cells (MSCs) overexpressing human
alpha-1 antitrypsin (hAAT-MSCs) showed improved mobility and protective functions over native
MSCs in nonobese diabetic mice. We investigated whether hAAT-MSCs could mitigate CP and its
associated pain using trinitrobenzene sulfonic acid (TNBS)-induced CP mouse models. CP mice
were given native human MSCs or hAAT-MSCs (0.5 × 106 cells/mouse, i.v., n = 6–8/group). The
index of visceral pain was measured by graduated von Frey filaments. Pancreatic morphology
and pancreatic mast cell count were analyzed by morphological stains. Nociceptor transient re-
ceptor potential vanilloid 1 (TRPV1) expression in dorsal root ganglia (DRG) was determined by
immunohistochemistry. hAAT-MSC-treated CP mice best preserved pancreatic morphology and
histology. MSC or hAAT-MSC infusion reduced abdominal pain sensitivities. hAAT-MSC therapy
also suppressed TRPV1 expression in DRG and reduced pancreatic mast cell density induced by
TNBS. Overall, hAAT-MSCs reduced pain and mitigated pancreatic inflammation in CP equal to
MSCs with a trend toward a higher pancreatic weight and better pain relief in the hAAT-MSC group
compared to the MSC group. Both MSCs and hAAT-MSCs might be used as a novel therapeutic tool
for CP-related pain.

Keywords: mesenchymal stromal cells; chronic pancreatitis; pain; inflammation; TRPV1; mast
cells; antitrypsin

1. Introduction

Chronic pancreatitis (CP) is a progressive condition in the pancreas that leads to
significant impairment of both endocrine and exocrine functions [1]. Its global prevalence
and incidence are estimated at 76.2 and 20.6 per 100,000 people, respectively [2]. CP is
characterized by unrelenting abdominal pain, persistent pancreatic inflammation, and
irreversible morphological changes such as fibrosis of the pancreas [3]. Up to 90% of
patients suffer from abdominal pain [4], and there are only limited therapeutic options
for pain relief [5]. The etiology of pain is poorly understood and probably multifaceted
with alternations in peripheral nociception, peripheral/pancreatic neuropathy, and altered
neuroplasticity [6–8]. The pain is thought to be a result of neurogenic and pancreatic
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inflammation [4]. Current medical therapy in CP pain control uses a stepped escalation
approach that often leads to opioid dependence [5]. The adverse effects of narcotics
and complications of interventional therapies may account for a substantial morbidity in
patients [9]. Thorough understanding of the origin of pain in CP will be essential to identify
novel therapeutic interventions that are urgently needed.

Mesenchymal stromal cells (MSCs) are fibroblast-like adult stem cells that possess the
ability to self-renew. They have a multi-lineage differentiation potential and are recognized
by unique cell surface markers [10]. The richest sources of MSC are adipose tissue and
bone marrow, but they can also be found in umbilical cord, placenta, synovial fluid,
and other sources [11]. MSCs are being studied in a variety of diseases because of their
immunoregulatory abilities, antifibrotic effects, and tissue protective features. Convincing
evidence from rodent studies and clinical trials shows that MSCs reduce chronic and
neurological pain associated with knee osteoarthritis, critical limb ischemia, neuropathy,
and diabetic neuropathy [12–15]. In a rodent study, a single injection of bone marrow-
derived MSCs (BM-MSCs) reversed pain hypersensitivity in rats after injury, and this effect
lasted for at least 22 weeks [16]. Moreover, BM-MSCs alleviated neuropathic pain in the
early stages of streptozotocin-induced rat diabetes [15]. In rat models of pancreatitis, MSCs
inhibited inflammation and pancreatic damage [17,18], supporting the potential use of
MSCs as a regenerative cellular therapy for CP patients.

Alpha-1 antitrypsin (AAT) is a circulating protein primarily synthesized in the liver. It
is an acute phase protein and a natural serine proteases inhibitor [19]. It plays a key role
in reducing inflammation by suppressing proinflammatory cytokine production in whole
blood [20], inhibiting neutrophil superoxide production [21] and protease activities [22],
preventing cell apoptosis [23,24], and stimulating cell growth and proliferation [19,25].
AAT expression in human peripheral blood mononuclear cells (PBMCs) is modulated
by promoter methylation of an inducible AAT coding gene SERine Protein INhibitor-A1
(SERPINA1) [26]. Because AAT therapy has shown beneficial effects in inflammation-
related disease models for rheumatoid arthritis, lupus, and type 1 diabetes (T1D) [27,28],
we overexpressed human AAT (hAAT) in MSCs to show improved intrinsic properties and
sustained efficacy in mice with T1D [28]. hAAT-MSCs reduced immune cell infiltration into
pancreatic islets, and one injection of hAAT-MSCs delayed the onset of T1D longer than
native MSCs in a NOD mouse model [28]. Together, hAAT-MSCs may possess improved
therapeutic effects compared to native MSCs in the treatment of CP pain.

In this study, we compared the hypoalgesic and therapeutic effects of hAAT-MSCs and
MSCs in CP. We used a painful CP mouse model that was previously established [29,30]
by injecting trinitrobenzene sulfonic acid (TNBS) into the bile duct of healthy mice. After
confirmation of the presence of CP features one week after TNBS infusion, we injected
native MSCs or hAAT-MSCs via the tail vein of some of the TNBS mice. We compared
the morphology and histology of pancreases from vehicle controls (PBS infusion via bile
duct), TNBS mice without MSC treatment (TNBS), and TNBS mice with native MSCs
(TNBS + MSCs) or hAAT-MSCs (TNBS + hAAT-MSCs). We also compared the index
of visceral pain, expression of transient receptor potential cation channel subfamily V
member 1 (TRPV1) in dorsal root ganglion (DRG), and pancreatic mast cell density among
the four groups.

2. Materials and Methods
2.1. Animal

A total of 56 male C57BL/6 mice at 10–12 weeks of age (The Jackson Laboratory,
Bar Harbor, ME, USA) were used in this study. CP was induced by a single infusion
of 0.4% TNBS (50 µL; Sigma-Aldrich, St. Louis, MO, USA) via bile duct as previously
described [29]. Mice were housed and cared for under standard operating procedures of
the Animal Facility at the Ralph H. Johnson VA Medical Center (VAMC) in Charleston,
SC, USA. All study procedures were approved by the Institutional Animal Care and Use
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Committee of the VAMC (Protocol #653, Date of issue: 28 May 2019, Expiration date: 27
May 2022).

The application of TNBS resulted in a model that showed progression from acute
pancreatitis to CP [30]. TNBS rodent models have been shown to resemble CP morpho-
logical features in human that include fibrosis, inflammation, monocyte infiltration, fatty
replacement, atrophy, and related pain behaviors [30–32]. Compared to other CP models,
the TNBS model is a simple single injection via the bile duct, while other models usually
require multiple doses injections (i.e., caerulein + ethanol model) or application of ethanol
to the drinking water (i.e., Dibutyltin chloride model) [31,33–35].

2.2. hAAT-MSC and MSC Preparation and Infusion

Human MSCs were isolated from bone marrow specimens of healthy donors pur-
chased from American Type Culture Collection (ATCC, Old Town Manassas, VA, USA).
Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), supplemented
with 10% fetal bovine serum (FBS), 1% penicillin and streptomycin in 5% CO2 at 37 ◦C.
hAAT-MSCs were prepared by lentivirus infection of native MSCs as previously de-
scribed [28]. Briefly, MSCs were transduced with the lentiviral vector encoding hAAT
and green fluorescent protein (GFP) [36]. Presence of GFP+ cells was detected under a
fluorescent microscope 96 h after viral infection. hAAT-MSCs and native MSCs at passage
5–8 (0.5 × 106 cells per mouse) were infused into the mice via tail veins one week after
TNBS treatment.

2.3. Histological Scoring of the Pancreas

Pancreas tissues were embedded in paraffin, sectioned (5 µm), and stained with
hematoxylin and eosin (H&E) and Masson’s Trichrome. Sections were deparaffinized in
xylene, dehydrated in alcohol gradients. H&E staining and Masson’s Trichrome staining
were performed by the Histology and Immunohistochemistry Laboratory at the Medical
University of South Caroline (Charleston, SC, USA). The sections were then examined by a
pathologist blinded to treatment group. The severity of pancreatitis was scored for in six
categories [37]:

(1) total area preserved (0%—the whole pancreas is damaged to 100%—no damage in
the pancreas)

(2) inflammation (0—no inflammation; 1—less than 25% inflammation; 2—25–50% in-
flammation; 3—50–75% inflammation and 4–100% inflammation)

(3) necrosis (0—no necrosis; 1—minimal necrosis; 2—mild necrosis; 3—moderate necro-
sis; 4—severe necrosis)

(4) fibrosis (0—no fibrosis; 1—minimal fibrosis; 2—mild fibrosis; 3—moderate fibrosis;
4—severe fibrosis)

(5) vacuole formation in acinar cells (0—no vacuolization; 1—less than 25% vacuolization;
2—25–50% vacuolization; 3—50–75% vacuolization and 4—100% vacuolization)

(6) interlobular edema (0—no interlobular edema; 1—minimal interlobular edema; 2—mild
interlobular edema; 3—moderate interlobular edema; 4—severe interlobular edema)

The total area preserved was scored according to the histoarchitectural features of the
whole slide, while the other five categories were scored in five fields/sections. The results
of each category, excluding the total area preserved, were expressed as the sum of those
five fields.

2.4. May-Grünwald-Giemsa Staining for Detection of Mast Cells

Paraffin-embedded pancreatic tissues from 3–4 mice were stained using May-Grünwald-
Giemsa staining [38,39] according to the manufacturer’s protocol (Eng Scientific, Clifton, NJ,
USA). In brief, sections were deparaffinized and incubated with May-Grünwald Solution
for 25 min follow by two washes with PBS. The sections then incubated with Giemsa Stain
for 20 min, washed with PBS, dehydrated in ethanol, and cleared with xylene. Mast cells
were counted in 10 fields/section under a light microscope (Olympus BX40). Researchers
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performing cell counts remained blinded to the treatment group. Results are expressed as
mast cell/mm2.

2.5. Immunohistochemistry

T9-12 DRG from mice were removed as previously described [40] and placed in 4%
paraformaldehyde for fixation. Fixed DRG were then placed in 20% sucrose for cryopro-
tection, embedded in optimal cutting temperature compound (Sakura Finetek, Torrance,
CA, USA), frozen, and sectioned at 14 µm using a cryostat. DRG sections were incubated
with rabbit anti- TRPV1 antibody (1:100; # PA5-77317, Invitrogen, Waltham, MA, USA) and
then with Alexa Fluor 568 goat anti-rabbit IgG (1:500; #A-11011, Invitrogen). Slides were
observed using a Zeiss AxioImager M2 fluorescence microscope. Intensity was calculated
using ImageJ software.

2.6. Behavioral Assessment of Pain

Von Frey filament (vFF) probing of the paw and abdomen was used to assess pain
postoperatively. VFF probing has been used and established as a measure of referred
abdominal mechanical hypersensitivity [30,32,41,42]. Starting from one week after MSC
injection, mice were acclimated for 1 h in plastic cylinders with a mesh floor before testing.
Paw and abdominal mechanical referred pain were measured by the application of cali-
brated vFFs (North Coast Medical, Morgan Hill, CA, USA) with increasing applied forces
to the paw and upper abdominal area five times each for 1–2 s. A response was considered
positive when the mouse raised, retracted, or licked its abdomen (withdrawal response).
Data are expressed as the lowest calibrated vFF applied forces needed to trigger a positive
response per mouse per experimental group.

2.7. Statistical Analyses

Data are expressed as mean ± standard error of the mean (SEM). Differences between
groups were analyzed by one-way ANOVA with Tukey post hoc test by GraphPad Prism 9.

3. Results
3.1. Mice Treated with MSCs or hAAT-MSCs Show Less Pancreatic Injury after TNBS Infusion

We induced CP using bile duct infusion of TNBS, a nitroaryl oxidizing acid that can
cause oxidative stress, pancreas damage, and pain [30,43] in C57BL/6 mice (Figure 1A).
One week after TNBS injection, mice were divided into three groups: TNBS (CP control),
TNBS + MSCs (CP mice receiving native MSCs), and TNBS + hAAT-MSCs (CP mice
receiving hAAT-MSCs). In the TNBS + MSC and TNBS + hAAT-MSC groups, each mouse
received a single dose of 0.5 × 106 cells via tail vein injection (Figure 1A). Mice receiving
PBS infusion at week zero were used as healthy controls (vehicle). At one week after TNBS
infusion, CP mice had a noticeable reduction in bodyweight compared to the vehicle. CP
mice also showed a slower recovery rate compared to other groups in terms of body weight
(Figure 1B) and percentage change of body weight (Figure 1C). The pancreas size and
weight in TNBS mice were significantly lower compared to the vehicle group at weeks two
and four (Figure 1D–F). hAAT-MSC-treated mice had the heaviest pancreas weight and
highest ratio of pancreas weight to body weight at week four compared to CP controls
(Figure 1G,H).
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tissue collection and analysis. (B,C) Body weight changes represented in total body weight and percentage change. Arrow 
indicates the infusion of human alpha-1 antitrypsin-overexpressed mesenchymal stromal cells (hAAT-MSCs) or native 
MSCs (Vehicle = 6, TNBS = 8, TNBS + MSCs = 6, TNBS + hAAT-MSCs = 6 mice per group). (D) Images of pancreases 
collected from Vehicle, TNBS mice, or TNBS mice treated with MSCs or hAAT-MSCs 0.5 × 106 cells/mouse). (E–H) Pancreas 
weights and percent ratio of pancreas weight to body weight at (E–F) 2 week-(Vehicle = 7, TNBS = 8, TNBS + MSCs = 8, 

Figure 1. The effects of mesenchymal stromal cell (MSC) therapy on the body weight and pancreas weight of chronic
pancreatitis (CP) mice. (A) Schematic diagram of CP induction by trinitrobenzene sulfonic acid (TNBS), cell infusion, and
tissue collection and analysis. (B,C) Body weight changes represented in total body weight and percentage change. Arrow
indicates the infusion of human alpha-1 antitrypsin-overexpressed mesenchymal stromal cells (hAAT-MSCs) or native
MSCs (Vehicle = 6, TNBS = 8, TNBS + MSCs = 6, TNBS + hAAT-MSCs = 6 mice per group). (D) Images of pancreases
collected from Vehicle, TNBS mice, or TNBS mice treated with MSCs or hAAT-MSCs 0.5 × 106 cells/mouse). (E–H) Pancreas
weights and percent ratio of pancreas weight to body weight at (E–F) 2 week-(Vehicle = 7, TNBS = 8, TNBS + MSCs = 8,
TNBS + hAAT-MSCs = 7 mice per group), and (G,H) 4 week post TNBS treatment. Scale bar = 1 cm. Data presented are
mean ± SEM. One-way ANOVA and Tukey’s test were used. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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3.2. MSC Infusion Preserves Pancreatic Histology in CP Mice

Bile duct infusion of TNBS consistently generated a mouse model that resembles the
CP features often seen in humans (Figure 2A). At weeks two and four, the pancreases
of TNBS mice demonstrated a significant loss of pancreatic structure and large regions
of intralobular fibrosis (Figure 2A,B and Figure S1). In contrast, the pancreases of mice
treated with native MSCs or hAAT-MSCs were better preserved with significantly reduced
fibrosis-positive staining (Figure 2A,B). Blinded histological evaluation of these slides
by an independent pathologist further confirmed increased fibrosis, interlobular edema,
and inflammation in the pancreases of TNBS mice compared to the healthy controls.
Furthermore, mice receiving native MSCs or hAAT-MSCs had much more of a preserved
area of the pancreas (Figure 2B). Mice receiving hAAT-MSCs also showed a trend of reduced
inflammation, necrosis, fibrosis, and interlobular edema (Figure 2B), which might have
contributed to better preserved pancreases.
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Figure 2. Human alpha-1 antitrypsin-overexpressed mesenchymal stromal cells (hAAT-MSC) and
MSC infusions improve pancreas morphology of chronic pancreatitis (CP) mice 4 weeks post trini-
trobenzene sulfonic acid (TNBS) treatment. To assess whether MSCs have any protective effects on
pancreas damage, pancreas tissues were stained with Hematoxylin and Eosin (H&E) and Masson
Trichrome. (A) Pancreatic structure of hAAT-MSC or native MSC-treated TNBS mice were better
preserved and showed significantly reduced staining of collagen and more normal histology. (B) The
stained pancreatic sections were scored by a pathologist according to six categories (n = 4 mice in
each group). Increased fibrosis and inflammation were seen in the pancreas of TNBS-treated mice
compared to that of the vehicle, while the pancreas in those treated with native MSCs or hAAT-MSCs
displayed better morphology. This data further confirmed the protective effects of MSCs on TNBS-
induced pancreas damage. Scale bar = 2 mm. Data presented are mean ± SEM. One-way ANOVA
and Tukey’s test were used. * p < 0.05.

3.3. MSC Infusion Ameliorates CP Pain

One of the hallmarks of CP is sustained visceral pain that often radiates to other body
parts. TNBS injection caused pain in mice that mimics the clinical symptoms of CP pain
as reflected by the surrogate measurements of paw and abdomen sensitivity using the
graduated vFF referred as mechanical hypersensitivities or pain threshold as reported
previously [29,30]. In this study, TNBS mice showed a significant increase in abdominal
and paw withdrawal sensitivities throughout the experiment compared to the healthy
controls (Figure 3A,B). Both native MSC and hAAT-MSC infusions reduced sensitivity to
these stimulations in treated TNBS mice. hAAT-MSC-treated mice showed significantly
reduced abdominal sensitivity compared to mice treated with TNBS at week three. At week
four, a trend of reduced abdominal sensitivity was observed in TNBS mice treated with
MSCs, but the differences did not reach significance. This data suggests that hAAT-MSCs
might have a more pronounced effect on relieving CP pain compared to native MSCs.



Biomedicines 2021, 9, 1695 8 of 15

Biomedicines 2021, 9, x FOR PEER REVIEW 8 of 16 
 

in each group). Increased fibrosis and inflammation were seen in the pancreas of TNBS-treated mice 
compared to that of the vehicle, while the pancreas in those treated with native MSCs or hAAT-
MSCs displayed better morphology. This data further confirmed the protective effects of MSCs on 
TNBS-induced pancreas damage. Scale bar = 2 mm. Data presented are mean ± SEM. One-way 
ANOVA and Tukey’s test were used. * p < 0.05. 

3.3. MSC Infusion Ameliorates CP Pain 
One of the hallmarks of CP is sustained visceral pain that often radiates to other body 

parts. TNBS injection caused pain in mice that mimics the clinical symptoms of CP pain 
as reflected by the surrogate measurements of paw and abdomen sensitivity using the 
graduated vFF referred as mechanical hypersensitivities or pain threshold as reported 
previously [29,30]. In this study, TNBS mice showed a significant increase in abdominal 
and paw withdrawal sensitivities throughout the experiment compared to the healthy 
controls (Figure 3A,B). Both native MSC and hAAT-MSC infusions reduced sensitivity to 
these stimulations in treated TNBS mice. hAAT-MSC-treated mice showed significantly 
reduced abdominal sensitivity compared to mice treated with TNBS at week three. At 
week four, a trend of reduced abdominal sensitivity was observed in TNBS mice treated 
with MSCs, but the differences did not reach significance. This data suggests that hAAT-
MSCs might have a more pronounced effect on relieving CP pain compared to native 
MSCs. 

 
Figure 3. Human alpha-1 antitrypsin overexpressing mesenchymal stromal cells (hAAT-MSC) and 
MSC infusion reduced mechanical abdominal and paw sensitivities in trinitrobenzene sulfonic acid 
(TNBS) mice. Mechanical sensitivity was measured with Von Frey filaments (Vehicle = 6, TNBS = 8, 
TNBS + MSCs = 6, TNBS + hAAT-MSCs = 6 mice per group). TNBS-induced chronic pancreatitis 
(CP) reduced mechanical (A) abdominal and (B) paw sensitivities. MSC infusion showed reduced 
sensitivity to the stimulations, and hAAT-MSCs had a numerically larger although not statistically 
significant effect on this reduction compared to native MSCs (p = not significant). The data suggest 
that MSC infusion may relieve pain in CP. Data presented are mean ± SEM. One-way ANOVA and 
Tukey’s test were used. + p < 0.5 vs. TNBS, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs. 
Vehicle. 

3.4. MSC Pain Reduction Is Associated with Downregulation of TRPV1 Expression 
Neurogenic inflammation contributes to pain-related behaviors in CP. Pain and in-

flammation associated with pancreatitis has been shown to require transient receptor po-
tential (TRP) channel TRPV1 [31–33]. To study the mechanism of MSCs in CP pain, we 
extracted DRG from T9-12 in mice at week four and stained them with an anti-TRPV1 
antibody. Neuronal TRPV1 expression in TNBS mice increased significantly compared to 

Figure 3. Human alpha-1 antitrypsin overexpressing mesenchymal stromal cells (hAAT-MSC) and
MSC infusion reduced mechanical abdominal and paw sensitivities in trinitrobenzene sulfonic
acid (TNBS) mice. Mechanical sensitivity was measured with Von Frey filaments (Vehicle = 6,
TNBS = 8, TNBS + MSCs = 6, TNBS + hAAT-MSCs = 6 mice per group). TNBS-induced chronic
pancreatitis (CP) reduced mechanical (A) abdominal and (B) paw sensitivities. MSC infusion showed
reduced sensitivity to the stimulations, and hAAT-MSCs had a numerically larger although not
statistically significant effect on this reduction compared to native MSCs (p = not significant). The
data suggest that MSC infusion may relieve pain in CP. Data presented are mean ± SEM. One-way
ANOVA and Tukey’s test were used. + p < 0.5 vs. TNBS, * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001 vs. Vehicle.

3.4. MSC Pain Reduction Is Associated with Downregulation of TRPV1 Expression

Neurogenic inflammation contributes to pain-related behaviors in CP. Pain and inflam-
mation associated with pancreatitis has been shown to require transient receptor potential
(TRP) channel TRPV1 [31–33]. To study the mechanism of MSCs in CP pain, we extracted
DRG from T9-12 in mice at week four and stained them with an anti-TRPV1 antibody. Neu-
ronal TRPV1 expression in TNBS mice increased significantly compared to healthy controls,
concurring with previous studies [31,32] (Figure 4A). Both native MSCs and hAAT-MSCs
drastically reduced TRPV1 expression in TNBS mice, with the numerical expression in the
hAAT-MSC group being lower than that of the native MSC group (Figure 4B). The data
suggests that MSC infusions may reduce pain by suppressing TRPV1 expression in the
DRG of CP mice.

3.5. MSC Infusions Inhibit Mast Cell Infiltration into the Pancreas of CP Mice

Perineural mast cells are specifically enriched in neuropathic pain in CP [34]. To
compare the presence of mast cells, pancreatic sections from all groups were stained with
May–Grünwald–Giemsa staining. As is evident in Figure 5, TNBS mice had significantly
increased mast cells density in the pancreas compared to the vehicle at four weeks after
TNBS injection. MSC infusions did not reduce the mast cells density in TNBS mice at
week two (Figure 5B). In contrast, at week four, mice treated with hAAT-MSCs or native
MSCs showed significantly fewer mast cells in the pancreas compared to TNBS mice
(Figure 5A,B), suggesting that the improvement in CP pain seen with MSCs is associated
with reduced mast cell infiltration.
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Figure 4. Human alpha-1 antitrypsin-overexpressed mesenchymal stromal cells (hAAT-MSC) and
MSC infusions reduced transient receptor potential cation channel subfamily V member 1 (TRPV1)
expression. Dorsal root ganglions (DRG) from T9-12 were harvested at 4 weeks after trinitrobenzene
sulfonic acid (TNBS) injection and (A) the expression of TRPV1, a pain receptor that is associated
with chronic pain, was examined (Vehicle = 5, TNBS = 5, TNBS + MSCs = 3, TNBS + hAAT-MSCs = 3
mice per group). Scale bar = 100 µm (B) TRPV1 expression in DRGs increased significantly in TNBS-
treated mice, and hAAT-MSC or MSC treatment drastically reduced its expression, suggesting that
MSCs might reduce pain via downregulation of TRPV1 expression. Data presented are mean ± SEM.
One-way ANOVA and Tukey’s test were used. ** p < 0.01 vs. Vehicle, + p < 0.05, ++ p < 0.01 vs. TNBS.
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4. Discussion

Developing effective therapies for CP pain continues to be challenging. There are
few mechanistic studies done regarding this disease and existing studies acknowledge the
need for a better understanding of pain pathogenesis [4]. Based on our current knowledge,
CP pain is a result of somatic and visceral pain derived from neurogenic and pancreatic
inflammation [4]. Since MSCs have been shown to be a promising therapy for tissue
inflammation in many models [10,44–48], we explored if MSCs might relieve the pain
associated with CP. We also compared whether overexpression of hAAT in MSCs enhances
their protective ability.

To examine the therapeutic effects of MSCs in vivo, we used a TNBS mouse model
that resembles major CP features including pancreatic atrophy and pain in humans. It has
been shown that CP features in rodents induced by TNBS at week 6 remained similar extent
as those at week 3 [31]. We found synchrony between increased pancreatic inflammation,
upregulation of TRPV1 expression in the DRG, and pancreatic mast cell infiltration follow-
ing a TNBS injury. Intravenous MSC infusions improved all of these features and resulted
in less pancreatic fibrosis at one month. hAAT-MSCs seemed to have a more profound
protection based on preserved pancreas area and weight, reduced sensitivity to stimulation
(pain), and reduced TRPV1 expression in the DRG of CP mice.

To date, there are only a few studies in which MSCs were administered for the treat-
ment of CP. The source of MSCs included mouse adipose-derived MSCs [49,50], rat umbili-
cal cord MSCs, human amnion-derived MSCs [18], and rat BM-MSCs [51,52]. Consistent
with our data, all the studies showed that MSC infusion reduced pancreatic damage and
decreased fibrosis. However, none of those studies investigated the mechanisms by which
MSC infusions might impact CP pain. In this study, TNBS-induced CP pain was confirmed
by vFF probing of the abdomen and paw. VFF probing is a well-established behavioral
pain assay that is used as a surrogate marker for visceral pain. TNBS mice receiving MSCs
developed reduced abdominal mechanical sensitivity, suggesting that MSCs alleviated
force-dependent abdominal referred pain. The evidence of reduced referred hyperalge-
sia in the paw by MSCs was weaker than in the abdomen, indicating that the measured
abdominal mechanical referred pain is specific and originated from the intra-abdominal
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area. Interestingly, although human studies are few in number, there appears to be no
association between pancreas morphology and CP pain in humans [53]. Therefore, to better
understand the relationship between the TNBS mouse model and human acute or chronic
pancreatitis pain, human trials will be required.

One major cause of CP pain is known to be TRPV1 activation [54,55]. TRPV1 is a
capsaicin receptor that modulates neuronal release of the inflammatory neuropeptide
substance P (SP) and calcitonin gene-related peptide (CGRP) [55], both of which are
involved in CP pain and are upregulated in TNBS rodent model [32]. TRPV1 also regulates
the activation of transient receptor potential ankyrin-1 (TRPA1), which mediates neurogenic
inflammation and inflammatory hyperalgesia [54]. A study demonstrated that capsazepine,
a TRPV1 inhibitor, suppressed SP release in CP mice [56]. Another study highlighted
the synergistic role of TRPV1 and TRPA1 in acute pancreatitis development [57]. Early
intervention with TRPV1 and TRPA1 antagonists (within three weeks of the development
of acute pancreatitis) attenuated the transition to and development of CP and downstream
pain behaviors in mice [54].

A novel finding of our study is that MSC infusions greatly reduce the expression of
TRPV1 in TNBS mice. MSCs are known for their homing ability to sites of inflammation
to moderate the release of growth factors and cytokines at the desired site. We could
not identify any native MSC or hAAT-MSCs in the DRG (data not shown), suggesting
that MSCs might not act directly on the neurons. Instead, they might act peripherally by
repairing neuroplasticity in the pancreas [58], or via the release of a secretome, which has
been shown to greatly lessen neuroinflammation and restore inflammatory cytokine and
signaling molecule balance in diabetic neuropathy [59,60].

We also showed firsthand that MSCs reduce mast cell density in CP mice. Mast cell
activation and visceral pain have been correlated in irritable bowel syndrome, cystitis,
complex regional pain syndromes, pancreatic cancer, and CP [61–64]. Perineural mast cells
usually interact with the nerve fibers by releasing mediators such as nerve growth factors,
histamine, and tryptase, leading to the release of SP and other neuropeptides [65]. Evidence
showed that BM-MSCs suppress mast cell degranulation, TNF-α production, chemokinesis
and chemotaxis in vivo and in vitro via upregulation of COX2 and that BM-MSCs were
facilitated through the activation of E-type prostanoid receptor 4 on mast cells [66]. In
myocardial infarction, mast cells promote proliferation and migration of BM-MSCs by
suppressing their myogenic differentiation through the platelet derived growth factor
pathway via downregulation of miR-145/miR-143 [67]. Taken together, native MSCs and
hAAT-MSCs might exert their anti-inflammatory ability via inhibiting mast cell migration
to the target site or degranulation after arrival. Further research must be done to understand
the interplay between MSCs and mast cells.

We have previously shown that hAAT-MSCs have better migration ability, increased
stemness, and other factors critical for MSC function compared to native MSCs [28]. We
could not definitively prove that hAAT-MSC infusions were more effective in reversing
TNBS pancreatitis or pain compared to native MSCs in this study although a strong trend of
better protection was observed in the hAAT-MSC group compared to the native MSC group
(Table S1). Overall, the trends in mast cell infiltration, TRPV1 signaling, and inflammatory
scores suggest that overexpression of alpha-1 antitrypsin (AAT) were helpful to decreasing
pancreatic inflammation.

The theory by which we embarked upon this project was that AAT is a potent in-
hibitor of serine proteases. AAT is anti-inflammatory; it suppresses cytokine production,
complement activation, and immune cell infiltration [28]. Studies have found an imbalance
of protease-to-protease inhibitor in patients with CP [9], and recurrent acute pancreatitis is
described in case reports of genetic AAT deficiency. If it is true that MSCs migrate to an
inflamed local environment, then the paracrine local release of AAT might be an effective
cure for CP. If MSCs work through more distant effects when given intravenously and have
a limited paracrine function, then AAT would be more systemically active. There have not
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been well executed studies of intravenous AAT in acute or chronic pancreatitis, but these
findings suggest that more formal human studies should be done.

One limitation of our study was that we used vFF probing as the primarily index of
pain. While vFF probing is a widely accepted method to measure mechanical sensitivity
of the abdomen, it may not be the best surrogate of internal visceral sensation. Therefore,
observing pancreatic electrical stimulation induced pain behaviors via intra-abdominal
electrodes may be a preferred choice to evaluate the magnitude of pancreatitis pain [32].

BM-MSCs are the most frequently used MSC in clinical trials and this cell type has been
approved by the Food and Drug Administration for acute graft-versus-host disease [68].
Their ease of culture and their ability to differentiate make them a promising tool for cell
therapy. Clinical trials using BM-MSCs show safety but weak efficacy in lung diseases [68].
The most common way to administrate MSCs is by intravenous infusion in which the
majority of the cells are trapped in the lungs before migration to the target sites [69–73].
However, clinical trials using MSCs for inflammatory bowel diseases demonstrated that
MSCs are not only safe but also therapeutically relevant with durable effects in patients [74].
There is currently no clinical trial in acute or chronic pancreatitis. We were able to locate
MSCs in the pancreas from this (data not shown) and our previous study [50] suggesting
that MSCs have the ability to reach the pancreas, but the precise pathway of travel is still
unclear. In line with our study, MSC therapy showed promising results in preclinical
studies of CP [18,50,51,53]. Further clarification on the pathophysiology of the disease
would allow better tailoring of MSC therapy.

5. Conclusions

We demonstrated a novel cellular therapeutic approach to reduce pain associated
with CP. Native MSC or hAAT-MSC therapy simultaneously reduce TRPV1 expression and
mast cell density in the pancreas. Further research is needed to understand the molecular
mechanisms of how MSCs exert their effects on TRPV1 and mast cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9111695/s1, Figure S1: Hematoxylin and Eosin (H&E) and Masson-Goldner
stains of pancreas 2 week post trinitrobenzene sulfonic acid (TNBS) treatment. Human alpha-1
antitrypsin-overexpressed mesenchymal stromal cells (hAAT-MSCs) or MSCs protective effects were
noticeable at two weeks (one week after MSC infusions). Scale bar = 2 mm. Table S1: A summary
table of the experiment outcomes. Human alpha-1 antitrypsin-overexpressed mesenchymal stromal
cells (hAAT-MSCs) showed trends of better protective effects than native MSC although results did
not reach significance.
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