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Human induced pluripotent stem cell (hiPSC)-derived insu-
lin-producing f cell therapy shows promise in treating type
1 diabetes and potentially type 2 diabetes. Understanding
the genetic factors controlling hiPSC differentiation could
optimize this therapy. In this study, we investigated the role
of glucose-regulated protein 94 (GRP94) in human f§ cell
development by generating HSP90B1/GRP94 knockout (KO)
hiPSCs, re-expressing GRP94 in the mutants and inducing
their p cell differentiation. Our results revealed that GRP94
depletion hindered f cell generation by promoting cell death
induced by endoplasmic reticulum (ER) stress and other
stressors during definitive endoderm (DE) differentiation.
Moreover, GRP94 deletion resulted in decreased activation
of WNT/f-catenin signaling, which is critical for DE specifica-
tion. Re-expression of GRP94 in GRP94 KO iPSCs partially
reversed DE differentiation deficiency and alleviated cell
death. These findings highlight the previously unrecognized
indispensable role of GRP94 in human DE formation and
consequent f} cell development from hiPSCs. GRP94 mitigates
ER stress-induced cell death and regulates the WNT/f-catenin
signaling pathway, which is both crucial for successful § cell
differentiation. These results provide new insights into the
molecular mechanisms underlying p cell differentiation
from hiPSCs and suggest that targeting GRP94 pathways
could enhance the efficiency of hiPSC-derived insulin-produc-
ing cell therapies for diabetes treatment.

INTRODUCTION

Destruction of pancreatic f cell survival and function are significant
features of type 1 diabetes (T1D) and type 2 diabetes (T2D). Genetic
variants or predispositions contribute to the pathogenesis of T1D
and T2D by combining with environmental factors."” Genome-
wide association studies have identified more than 700 risk loci for
T2D’ and more than 50 genetic variants associated with T1D.*
Recent genomic research has revealed that most genes linked to
heightened vulnerability to diabetes are intricately intertwined
with the regulation of B cell growth and function throughout embry-
onic and fetal development, highlighting their role in pancreatic p
cell development.” Understanding the high-risk genes that cause de-

fects in pancreatic p cell development could pave the way for more
targeted and effective treatments for diabetes.

Glucose-regulated protein 94 (GRP94), or GP96, is a chaperone
protein of the heat shock protein 90 (HSP90) family, which is en-
coded by the HSP90BI gene in humans. It resides in the endo-
plasmic reticulum (ER) of a cell and is involved in regulating vital
biological functions as an ER chaperone. GRP94 also plays an
essential role in protein folding, quality control of secretory pro-
teins, calcium binding, and other biological functions via interac-
tions with either clients or co-factors.” Evidence from animal
models indicates that GRP94 is essential for mouse embryonic
development, B cell function, and insulin secretion. Deleting the
HSP90BI gene in mice led to embryonic lethality by gestational
day 7, before gastrulation and mesoderm formation.” Deficient
GRPY4 activity results in a substantial loss of intracellular proinsu-
lin and reduced insulin secretion.*” Our previous studies also
demonstrated that mice in which GRP94 was deleted in pancreatic
and duodenal homeobox 1 (PDX1)-expressing cells exhibited
pancreatic hypoplasia at embryonic days E16.5 to E18.5 and had
significantly reduced B cell mass at 4 weeks after birth.'” These
studies using mouse models provide insight into pancreatic devel-
opment and f cell physiology. However, the exact role of GRP94 in
human P cell development remains largely unknown, mainly
because of the inherent limitations of animal models due to critical
differences with humans at the genetic and physiological levels.' '

Primary human islets isolated from the pancreases of cadaveric do-
nors are essential sources for studying the effect of genetic variation
on islet function."® However, the sources of human islets are scarce,
and they often exhibit considerable variability after isolation.'*"
Moreover, it is challenging to culture isolated human islets for
extended periods, and this disadvantage limits the capabilities to
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Figure 1. GRP94 KO hiPSCs failed to differentiate into insulin* § cells
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(A) Schematic of HSP90B1/GRP94 KO cell generation by CRISPR-Cas9 gene editing. (B) Western blot analysis illustrating GRP94 expression levels in HSP90B1-KO1,
HSPO0B1-KO2, and HSP90B1-WT cells. (C) Morphology of HSPO0B1-KO1, HSP90B1-KO2, and HSP90B1-WT cells observed under the light microscope. Scale bar,
200 pm. (D) Immunostaining analysis of Oct4, Sox2, and Nanog in HSP90B1-KO1, HSP90B1-KO2, and HSP90B1-WT iPSCs. Scale bar, 40 um. (E-H) Western blot analysis
and quantification (relative to p-tubulin) of the pluripotent markers in HSP90B1-KO1, HSP90B1-KO2, and HSP90B1-WT cells. () Morphology (top) and immunostaining
(bottom) of GRP94 and insulin in iPSC-derived f cells after stage 7 in HSP90B1-KO1, HSP90B1-KO2, and HSPO0OB1-WT cells. Green, GRP94; red, insulin; blue, DAPI. Scale

bars, top: 200 pm and bottom: 20 pm.
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manipulate them to study the impact of genetic variants.
contrast, human induced pluripotent stem cells (hiPSCs), provide
in vitro models of inaccessible human cell types, yielding new in-
sights into disease mechanisms. Generating pancreatic endocrine-
like cells from iPSCs represents an approach to investigating genetic

defects leading to impaired f cell development and function.'®"”

In this study, we investigated the role of GRP94 in human f cell
development by generating HSP90BI knockout (KO) hiPSCs. These
cells facilitated a comparison of definitive endoderm (DE) and f cell
differentiation between the KO and wild-type (WT) hiPSCs. The
GRP94 KO cells with exogenous GRP94 expression were used to
confirm the role of GRP94 during DE differentiation.

2 Molecular Therapy Vol. 33 No 8 August 2025

RESULTS

GRP94 deletion prevents p cell differentiation of human iPSCs
We previously reported that deletion of GRP94 in Pdx1" or insulin®
cells in mice reduced p cell mass.'’ To decipher the potential role of
GRP94 in human p cell development, we generated two HSP90BI
KO hiPSCs, HSP90B1-KO1 and HSP90B1-KO2, using CRISPR-
Cas9 gene editing in K3 iPSCs (Figure 1A). The HSP90B1-KO1
line carried a 21-bp deletion in one allele and a 1,034 bp deletion
in the other, while the HSP90B1-KO2 line had a 13- and 14-bp
deletions in each allele, respectively (Figures S1A and S1B). These de-
letions led to frameshift mutations and complete loss of GRP94 pro-
tein expression in both KO lines (Figure 1B). Despite the absence of
GRP94, both HSP90B1-KO1 and HSP90B1-KO2 iPSC lines
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maintained typical hiPSC morphology (Figure 1C), with similar ex-
pressions of pluripotency markers, including OCT4, SOX2, and
NANOG, as assessed by immunostaining analysis (Figure 1D) and
western blot and quantification (Figures 1E-1H).

To assess the role of GRP94 in human p cell development, we
compared P cell differentiation between HSP90B1-KO1 and
HSP90B1-KO2, with HSP90B1-WT control iPSCs. The differentia-
tion of P cells from HSP90B1-WT cells was induced using a revised
protocol based on previous publications.'®** The process was char-
acterized by the presence of transcription factors or markers specific
for key stages during p cell differentiation: DE (FoxA2 and SOX17),
pancreatic progenitor PDX1 and NKX6.1), and mature  cell (C-pep-
tide) (Figure S2A). Further confirmation of P cell lineage was
obtained through GFP expression in pGreenZeo differentiation re-
porter transfected iPSCs and positive insulin staining, both at stage
7 of differentiation (Figures S2B and S2C). In contrast, both
HSP90B1-KO1 and HSP90B1-KO2 exhibited distinct morphological
differences during differentiation, notably failing to form organoids
from stage 5, compared with HSP90B1-WT cells (Figure 11, top). Im-
munostaining also revealed a complete absence of insulin® f cells in
the mutated lines at stage 7 (Figure 11, bottom). These results suggest
that deletion of GRP94 in hiPSCs impairs their ability to differentiate
into P cells.

GRP94 deletion prevents DE formation of hiPSCs

DE differentiation is the first major checkpoint in the process of f cell
differentiation of hiPSCs.** To investigate the underlying mecha-
nism of a f cell differentiation defect in GRP94 KO cells, we first
compared the DE differentiation potential of two mutants with
HSP90BI-WT cells. qPCR analysis revealed a significant reduction
in the mRNA expression of DE-associated genes, including
FOXA2, GATA4, FOXA1, CXCR4, and SOX7, in both HSP90B1-
KO1 and HSP90B1-KO2 at 72 h of DE differentiation, compared
with WT controls (Figure 2A). However, we did not observe any dif-
ference in the mRNA expression of GATA6, another critical tran-
scriptional factor involved in endoderm specification,”’ between
the two mutants and WT cells. In addition, we measured the expres-
sion of SOX17, a master regulator that initiates and drives the early
stage of DE differentiation from iPSC.** Flow cytometry and immu-
nostaining analysis confirmed a significant reduction of SOX17" cells
(Figures 2B and 2C) and FOXA2 (Figure 2E) in HSP90B1-KO1 and
HSP90B1-KO2, compared with HSP90B1-WT cells. Together, these
findings indicate that GRP94 deletion impairs DE deficiency in
hiPSCs.

During gastrulation in embryogenesis, DE is generated alongside
mesoderm and ectoderms from pluripotent epiblast cells.”>** To
investigate whether the differentiation defect induced by GRP94
deletion is specific to DE differentiation, we compared mesoderm
and ectoderm differentiation potentials of two mutants with
HSP90BI-WT cells. Significant decreases of the mesoderm markers
TBXT and BMP2 were observed at both the mRNA and protein levels
in the mutants compared with HSP90B1-WT cells after 48 h of dif-

ferentiation (Figures 2A and 2F-2H). In contrast, no significant
changes were detected in the mRNA levels of BMP4, CDH2, and
FLK1 (Figure 2A), despite their previously reported roles as impor-
tant regulators in mesodermal differentiation of stem cells.”* *°
contrast, no significant differences were observed in ectoderm
mRNA expression, including NEURODI, MSI1, and OTX2
(Figure 2A), or percentage of OTX2-positive cells (Figures 2I-2K)
between two mutants and HSP90B1-WT cells during ectoderm dif-
ferentiation, suggesting that GRP94 is not essential for ectoderm dif-
ferentiation of hiPSCs. Therefore, GRP94 preferentially regulates
both DE and mesoderm differentiation of hiPSCs, with a more pro-
nounced role in DE differentiation.

In

RNA sequencing analysis of gene expression regulated by
GRP94 during DE differentiation

To further elucidate the mechanisms underlying the DE differentia-
tion defects associated with GRP94 deletion, we conducted bulk
RNA sequencing (RNA-seq) analysis to compare the global gene
expression profiles between two HSP90B1-WT hiPSC lines (K3
and SV20) and two GRP94-deleted lines (HSP90B1-KO1 and
HSP90B1-KO2). GRP94 deletion resulted in changes in gene expres-
sion (Figure 3A), with 976 genes exhibiting significantly altered
expression (padjusted < 0.05) (Figure 3B), which were selected for
further analysis.

Gene Ontology (GO) enrichment analysis of the 585 downregulated
genes revealed significant involvement in various biological pro-
cesses, cellular components, and molecular functions. Biological pro-
cess analysis identified a prominent enrichment in genes associated
with the response to ER stress and others (Figure 3C). Cellular
component analysis indicated that most genes were associated with
the ER lumen and others (Figure 3C). Molecular function analysis
highlighted enrichment in scaffold protein binding, phosphatidyli-
nositol bisphosphate kinase activity, and several other functions
(Figure 3C). Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis of the downregulated genes identified enriched
pathways related to protein processing in ER, endocrine resistance,
calcium signaling, and signaling pathways regulating pluripotent of
stem cells, as well as other related pathways (Figure 3D). For the
391 upregulated genes, GO analysis revealed enrichment in processes
related to response to extracellular stimulus, components of the pro-
teinaceous extracellular matrix, and the ER lumen, as well as extra-
cellular binding (Figure 3E). KEGG analysis indicated that these
genes are involved in mitogen-activated protein kinase signaling
(MAPK), advanced glycation end-product (AGE) and recpetor of
AGE (RAGE) signaling, and other relevant pathways (Figure 3F).

GRP94 deletion increases apoptosis and cell death upon ER
stress during DE differentiation

Given the role of GRP94 in the cellular response to ER stress and pro-
tein processing, as indicated by bulk RNA-seq, we evaluated cell
death, including apoptosis in HSP90B1-KO1, HSP90B1-KO2, and
HSP90B1-WT cells at 72 h post DE differentiation. There was a sig-
nificant increase in cell death in both mutant lines compared with
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Figure 2. GRP94 deletion prevented DE differentiation of hiPSCs
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(A) mRNA expressions of typical markers for DE, mesoderm, or ectoderm lineages were assessed after differentiation of HSP90B1-KO1, HSPO0B1-KO2, and HSPOOB1-WT
cells toward DE, mesoderm, or ectoderm, respectively. Relative mRNA expression was normalized to 18S RNA. Data are presented as the mean + SD of at least three
independent experiments, each with two replicates. **p < 0.01 and *p < 0.05 versus HSP90OB1-WT. (B and C) Flow cytometry analysis of marker for DE (SOX17) and
quantification in WT and mutant cells. Immunostaining of SOX17 (D) and FOXA2 (E) in differentiated cells. Scale bar, 40 pmin D and 20 pm in (E). Flow cytometry analysis and
immunostaining of mesoderm marker, TBXT (F-H), and ectoderm marker OTX2 (I-K) in WT and mutant cells. Scale bar, 40 um. Data are presented as mean + SD of at least

three independent experiments. **p < 0.01 and *p < 0.05 versus HSP90B1-WT.

HSP90B1-WT (Figures 4A and 4B). Immunostaining at 24, 48, and
72 h after DE induction showed a progressive increase in cleaved cas-
pase3 (c-Cas3) positive apoptotic cells in both mutants relative to the
WT controls (Figure 4C). These results collectively suggest that
GRP94 deletion promotes increased cell death, specifically apoptosis,
during DE differentiation of hiPSCs.

iPSCs and DE cells are more susceptible to ER stress than other cell
types, such as fibroblasts.”” Based on RNA-seq analysis, which re-
vealed a reduced expression of genes involved in the ER stress
response (Figures 3B and 3C), we speculated that increased cell
apoptosis and death observed in GRP94 deletion cells might result

4 Molecular Therapy Vol. 33 No 8 August 2025

from an inability to maintain ER homeostasis under stress condi-
tions. To investigate this, we measured the expression of ER
stress-related  proteins in undifferentiated HSP90B1-KO1,
HSP90B1-KO2, and HSP90B1-WT cells. We found that critical
ER stress sensors, including protein kinase RNA-like ER kinase
(PERK) and activating transcription factor 6 (ATF6)*** were
significantly reduced in two mutant cell lines compared with
HSP90B1-WT, while the expression of inositol-requiring
enzyme-la (IREla) and protein disulfide isomerase (PDI) was rela-
tively unchanged (Figures 4D-4H). In DE cells derived from these
undifferentiated iPSCs, we observed a marked decrease in PERK
and IREla levels in HSP90B1-KO1, along with an increase in BiP
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Figure 3. Bulk RNA-seq analysis showed differential gene expression between HSP90B1 KO and HSP90B1-WT iPSCs

(A) Volcano plot showing differential gene expression between HSPOOB1-WT versus KO cells. (B) Heatmap of 976 significantly differentially expressed genes (Dagjustea < 0.05)
between HSP90B1-WT and KO cells. (C) GO analysis of the 585 significantly downregulated genes in HSP90B1-WT compared with KO cells. (D) KEGG analysis of the
downregulated genes. (E) GO analysis of the 391 significantly upregulated genes in HSP90B1-WT compared with KO cells. (F) KEGG analysis of the upregulated genes.

(GRP78) in comparison with HSP90B1-WT and no change in PDI
expression (Figures 4I-4M). The unfolded protein response (UPR)
is activated to restore ER homeostasis under stress.’”*' Because
PERK, IRE1, and ATF6 are crucial for UPR activation, these find-
ings suggested that UPR is compromised in GRP94 KO cells.
Therefore, GRP94 deletion impaired the UPR and cellular response
to ER stress, contributing to increased cell death.

GRP94 deletion reduces the activation of Wnt/f-catenin
signaling

To further investigate the mechanisms underlying the differentiation
defect in DE cells following GRP94 deletion, we measured key regu-
lators involved in driving DE differentiation of hiPSCs, including
Smads and P-catenin, which are critical components of the trans-
forming growth factor (TGF)-B and WNT/f-catenin signaling path-
ways.'>?>?> We first examined the expression of genes integral to
TGF-p signaling pathway, such as TGFBI, TGFB2, TGFB3 and
TGFB4 receptors and SMAD2, SMAD3, SMAD4. However, qPCR

analysis indicated no significant change in the expression of these
genes (Figure 5A). Additionally, western blot and immunostaining
analysis showed no marked difference in the expression or activation
of p-Smad2 and Smad2/3 between two mutants and the HSP90B1-
WT (Figures 5B, 5D, 5E, and 5H), suggesting that GRP94 deletion
does not impact TGF-f signaling pathway.

We next examined the expression levels of key genes involved in
the WNT pathway including CTNNBI1, LRP6, and GSK3B in the
WT and mutant cells. CTNNBI1, which encodes p-catenin, is a
central component of the Wnt/B-catenin signaling pathway.’*
LRP6 stabilizes p-catenin by inhibiting its phosphorylation, inde-
pendent of Axin degradation.’> GSK3p, in contrast, regulates
p-catenin levels.’®*” However, qPCR analysis indicated no notice-
able change in CTNNBI, LRP6, and GSK3B in HSP90B1-KO1 and
HSP90B1-KO2 compared with HSP90B1-WT cells by qPCR anal-
ysis (Figure 5A). Moreover, western blot analysis also showed no
discernible difference in B-catenin expression between the two
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Please cite this article in press as: Wei et al., GRP94 is indispensable for definitive endoderm specification of human induced pluripotent stem cells, Molecular

Therapy (2025), https://doi.org/10.1016/j.ymthe.2025.04.025

HSP90B1-WT HSP90B1-KO2

HSP90B1-KO1

Annexin V

Cell Percentage

a
-3

Molecular Therapy

=== HSPY0B1-WT
== HSPY0B1-KO1
== HSP9Y0B1-KO2

w
S

N
=]

-
°

o

Annexin V+PI-  Annexin V+PI+ Annexin V-Pl+

c D E F
C-Cas3/FOXA2/DAPI  C-Cas3/FOXA2/DAPI C-Cas3/FOXA2/DAPI 20 > 1.5
- HSP90B1WT HSP90B1-KO1 HSP90B1-KO2 5 - g *
2 E 18 “-c'— 1.0
I P §
& GRPY4 | e amw e 100kDa g 10 8
5 2 S o5
2 2 £
PERK | " 49 e 140kDa gos g
: s 0.0 00
) — - & S \5(‘ & &
¥4 ATF6 | g e 90kDa N3 f & &
2 ——— - Q%@ R & S
3 L e
& IRETA | o - - : 130kDa G 20 H =
T —— ——— — _ _
5
[ S 15 E 15
N w . 'y
e} PDI | K <
g 57kDa £ £
g g g
g Bactin |SS S EREBES o= . - | 43kDa g os gos
x 0.0 0.0
R &8
Tlme (hrs) & 8 PR
EEE L
| HSP90B1-WT  HSP90B1-KO1 J K L M
K 15 K *% 1.5
GRPO4 [ e v 100kDa " _ o _
3 - 2 “ Sos 3
140kDa £ 10 S10d B I L 10
PERK |&% &9 s £ £ < os £
3 3 g S
IRETa |4 5 a» #= o | 130kDa S os S o0s ;. 0.4 2 05
— = — 3 5 = 8
- [ : w 2 @ 02 [
BiP Rk i 78kDa & €
0.0 0.0 0.0 00
N
PO e —— 5702 & 8 RS S R
& IS & N IS
—— T S & & 4 & &S
& & g & F £ g &
¥ £ R ¥g ES

Figure 4. GRP94 deletion reduced cell response to ER stress in hiPSCs and during DE differentiation of hiPSCs

(A and B) DE differentiation of HSP90B1-KO1, KO2, and WT cells was induced, and the cell death was analyzed at 72 h of differentiation by flow cytometry. Data are
presented as mean + SD of at least three independent experiments. (C) Cells were fixed at 24, 48, and 72 h of DE differentiation, and the cleaved caspase 3 (c-Cas-3) was
measured by immunostaining. Scale bar, 40 pm. Blue, DAPI; green, GRP94; red, FOXA2. (D-H) The ER proteins PERK, IRE1a, ATF6, and PD1 were measured in undif-
ferentiated HSPO0B1-KO1, HSP90B1-KO2, and HSPO0B1-WT iPSCs by Western blot, quantified using p-actin as endogenous control. (I) Western blot analysis showed
expression of ER-stress-related proteins at 72 h of DE differentiation of HSP90B1-KO1, and HSP90B1-WT cells. (J-M) Quantification of protein expression using p-actin as

endogenous control. Triplicates have been shown.
**p < 0.01 and *p < 0.05 versus HSPYOB1-WT.

mutants and WT (Figures 5B and 5C). However, the translocation
of P-catenin from the cytosol to the nucleus was significantly
decreased in HSP90B1-KO2 compared with HSP90B1-WT
cells (Figures 5E-5G). The decrease in nuclear translocation of
fB-catenin induced by GRP94 deletion was further confirmed by
immunostaining, which showed a higher amount of B-catenin
in the cytosol but not in the nucleus of HSP90B1-KO1 and
HSP90B1-KO2 compared with HSP90B1-WT cells before and af-
ter DE differentiation (Figures 5H and 5I). These findings suggest
that GRP94 deletion inhibits the activation of the Wnt/p-catenin
signaling pathway by impairing the nuclear translocation of
[B-catenin.

6 Molecular Therapy Vol. 33 No 8 August 2025

Exogenous expression of GRP94 in the GRP94 KO hiPSCs
partially restored their potential for DE differentiation and
rescued DE cell death

To further validate the role of GRP94 in DE differentiation, we
induced exogenous GRP94 expression in HSP90B1-KOI and
HSP90B1-KO2 cells by electroporation and designated them as
HSP90B1-KORI1 and HSP90B1-KOR?2 (Figure 6A). GRP94 expres-
sion in these cells was confirmed by western blot and immunostain-
ing (Figures 6B and 6C). Gene expression comparisons among
HSP90B1-WT, HSP90B1-KO1, HSP90B1-KO2, HSP90B1-KORI,
and HSP90B1-KOR2 were further analyzed using bulk RNAs-eq
data, including those shown in Figure 3B. Exogenous GRP94
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40 pm. Blue, DAPI; green, p-catenin; red, SOX17.

re-expression in both HSP90B1 KO cells partially reversed expres-
sion changes of genes induced by GRP94 deletion, which include
107 significantly downregulated and 41 upregulated genes
(Figure 6D). Metascape analysis of the downregulated genes
induced by GRP94 deletion, which were rescued by exogenous
GRP94, revealed their involvement in processes such as the
response to ER stress, intracellular protein transport, activation
of chaperons by IRE1q, protein secretion, chaperon-mediated pro-
tein folding, and other processes (Figure 6E). Moreover, exogenous
GRP94 expression in the KO cells led to the upregulation of genes
associated with processes like DNA replication and regulation of
protein polymerization, among other functions impacted by
GRP94 deletion (Figure 6F).

Flow cytometry analysis showed a significant reduction in dead or
apoptotic cells in HSP90B1-KO1R and HSP90B1-KO2R compared
with HSP90B1-KO1 and HSP90B1-KO2 during DE differentiation
(Figures 6G and 6H). These results indicate that the re-expression
of GRP94 partially rescued cell death induced by GRP94 deletion.
In addition, the numbers of SOX17- and FOXA2-positive cells
were increased in HSP90B1-KOIR and HSP90B1-KO2R compared
with HSP90B1-KO1 and HSP90B1-KO2 during their DE differenti-
ation (Figures 61 and 6]), indicating that exogenous GRP9%4 re-
expression partly restored DE differentiation potential induced by
GRP94 deletion. Together, these findings support the essential role
of GRP%4 in DE differentiation of hiPSCs, likely through the regula-
tion of cell responses to ER stress.
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(A) Schematic outlining the generation of GRP94 KO RE (exogenous GRP94 re-expression) cells, in GRP94 KO cells . (B) Western blot analysis of GRP94 expression in
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munostaining analysis of GFP and GRP94 expression in HSP90B1-KO1 cells. Scale bar, 40 pm. Blue, DAPI; green, GFP; red, GRP94. (D) Heatmap of significantly differ-
entially expressed genes (Dagjusted < 0.05) in HSPOB1-WT versus GRP94 KO, and GRP94 KO versus GRP94 KO RE. WT and KO data were from Figure 3B. The top 107
downregulation and top 44 upregulation genes are represented. Triplicates are listed in each cell line. (E) Metascape functional enrichment of the 107 downregulated genes in
HSP90B1-WT, GRP94 KO, and GRP94 KO RE cells. (F) Metascape analysis of the 44 upregulated genes in HSP90B1-WT, GRP94 KO, and GRP94 KO RE cells. (G and H)
Cell apoptosis and death were analyzed at 72 h of DE differentiation by Annexin V and Pl staining using flow cytometry. Data are presented as mean + SD of at least three
experiments. **p < 0.01 and *p < 0.05. (Il and J) DE differentiation potential of HSP90B1-WT, GRP94 KO, and GRP94 KO RE cells was quantified by flow cytometry using

FOXA2 and SOX17 analysis. Data are presented as mean + SD of at least three experiments. *p < 0.01 and *p < 0.05.

DISCUSSION

While the involvement of GRP94 in mesoderm induction and mus-
cle differentiation has been documented,”***’ its role in human DE
and P cell specification, as well as its underlying mechanism, remain
poorly understood. Because human gastrulation and early lineage
commitment cannot be studied in vivo, and GRP94 deletion is
embryonically lethal in mouse models,”** we turned to hiPSC
models to investigate the critical role of GRP94 in human f cell
development. Our findings demonstrate that GRP94 is indispensable
for DE specification and differentiating p cells from hiPSCs. This role
was further validated through the exogenous expression of GRP94,

8 Molecular Therapy Vol. 33 No 8 August 2025

which rescued the phenotype defects associated with GRP94 dele-
tion. These results offer valuable insights into the molecular mecha-
nisms of human DE specification and f cell development.

The ER plays a critical role in the transport and processing of secre-
tory, lysosomal, and transmembrane proteins, as well as in regulating
various physiological processes, including cell differentiation. Dis-
ruptions in protein processing can compromise ER homeostasis,
leading to ER stress.”’ In response, the cells activate an adaptive
UPR to restore ER homeostasis by initiating ER stress sensors,
including PREK, ATF6, and IRE1.*> While physiological levels of
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ER stresses are essential for proper cell differentiation, prolonged or
excessive ER stress can inhibit differentiation and may trigger cell
death.*>** Our study revealed that GRP94 deletion led to reduced
expression of key genes involved in the UPR and ER stress pathways,
including ATF6, IRE1, and PERK. This disruption of UPR caused by
the absence of GRP94 contributed to increased cell death and
impaired DE differentiation, likely due to the inability to maintain
ER homeostasis. This impairment in DE differentiation seems to
stem from disturbed UPR and ER signaling, a finding that aligns
with previous research underscoring the critical role of UPR in the
DE specification of mouse embryonic stem cells.*>*°

While the regulatory role of GRP94 in Wnt/f-catenin signaling has
been documented,*” the precise mechanisms remain unclear. In
this study, we assessed the impact of GRP94 on the WNT/f-catenin
and TGEF-f signaling pathways, both of which are required to
trigger DE differentiation of hiPSCs. Although we did not observe
significant changes in the expression levels of key genes involved in
the WNT/f-catenin signaling pathway between WT and mutant
cells, our analysis revealed a notable decrease in the translocation
of p-catenin from the cytoplasm to the nucleus in the mutants.
This suggests a downregulation of P-catenin activity despite the
lack of significant changes in gene expression. Our RNA-seq anal-
ysis suggests that GRP94 regulates the expression of genes associ-
ated with intracellular protein transport. Consistent with this,
GRP94 deletion impaired the nuclear translation of P-catenin
from the cytoplasm, a defect that reversed upon re-expression of
GRP94. These findings suggest that inhibiting WNT/B-catenin
signaling due to GRP94 deletion is a key factor in the observed defi-
ciency in DE differentiation of hiPSCs. It is worth noting that the
activation of WNT/B-catenin signaling is also critical for mesoderm
differentiation, as demonstrated in our study and previous
work.*®*’ This explains the reduced mesoderm differentiation effi-
ciency in GRP94 KO cells observed here. In addition to Wnt/p-cat-
enin signaling, TGF-f signaling is also required for DE differentia-
tion. However, we did not observe a significant impact of GRP94 on
the TGEF-p signaling during differentiation. The specific regulatory
role of GRP94 in the DE differentiation stage warrants further
investigation.

In previous mouse models, we observed that GRP94 deletion in
Pdx-1" or insulin™ cells led to pancreas atrophy and a reduction
in B cell mass but did not significantly impact p cell maturation,
suggesting that GRP94 is required before the endocrine progenitor
stage during embryonic development.'® However, investigating
GRP94 KO during early embryonic development in vivo is chal-
lenging, as GRP94 KO mice embryos die by day 7 of gestation.”
This limitation led us to investigate the role of GRP94 further using
an in vitro human iPSC differentiation model. In the current study,
we further demonstrate that GRP94 plays a critical role in survival
and differentiation during DE differentiation of hiPSCs, reinforc-
ing its indispensability in the early stage of human f cell develop-
ment. Therefore, the data obtained from our in vitro model comple-
ment our previous in vivo findings, providing insights into the

critical role of GRP94 across the entire f cell development process,
specifically related to human DE development. These combined
data also help to elucidate the potential mechanisms underlying
GRPY4 deficiency, which could inform strategies for targeted ther-
apeutic interventions.

We found that the impaired DE differentiation and increase in cell
death caused by GRP94 deletion were partially rescued by exogenous
re-expression of GRP94 in the mutant iPSCs. This highlights the crit-
ical regulatory role of GRP94 in these processes. Additionally, RNA-
seq analysis revealed that GRP94 regulates a broader range of gene
expressions beyond those associated with ER stress response and
protein transport. It is worth noting that re-expression of GRP94
leads to upregulations of genes involved in DNA replication and pro-
tein polymerization. The transition from pluripotency to differenti-
ation of iPSCs is governed by complex molecular mechanisms that
regulate the cell cycle and DNA replication during differentiation.>’
Specifically, it has been shown that human embryonic stem cells
initiate differentiation in the early G1 phase and commit to specific
lineages in the G2 phase.”’ Additionally, protein polymerization
plays a critical role in cell differentiation by influencing cell shape
and structure, mainly through filaments such as actin and microtu-
bules.”® While, to the best of our knowledge, there is no direct evi-
dence linking DNA replication and protein polymerization to DE
or B cell differentiation, we believe that investigating whether
GRP94 regulates these processes during DE differentiation and f
cell development is an interesting topic for future research.

GRP94 and its client proteins can serve as promising targets for
improving the efficacy of cell therapy in diabetes treatment through
various strategies. First, as informed by current evidence, boosting
GRP94 expression and activity during stem cell differentiation into
functional P cells could improve the effectiveness of stem cell-based
therapies for diabetes. The second approach can focus on enhancing
the function of pancreatic f cells, as GRP94 plays a critical role in pro-
insulin handling,8 as well as P cell survival and function.'® Moreover,
defects in B cell proinsulin handling in GRP94 KO cells activates in-
flammatory pathways and sensitizes f cells to immune attack.”” By
modulating GRP94 expression in these cells, either through gene ed-
iting or small molecule modulators, insulin secretion, sensitivity, and
B cell survival could be enhanced, potentially benefiting both T1D and
T2D patients.”>”* These approaches, alone or in combination, could
improve the efficacy of cell therapy in treating diabetes.

Taken together, our results indicate that GRP94 is indispensable for
B cell differentiation of hiPSCs by regulating DE specification. The
impaired cellular response to ER stress and reduced p-catenin activa-
tion caused by GRP94 deletion are key mechanisms underlying the
DE differentiation deficiency observed in GRP94 KO iPSCs.

MATERIALS AND METHODS

Cell culture and gene modification of hiPSCs
hiPSC lines K3 and SV20 were provided by Dr. Stephen Duncan.”>>°
The study was approved by the MUSC Stem Cell Research Oversight
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Committee. No human subjects were involved. The cells were
routinely cultured on Matrigel (BD Biosciences) in Stemflex medium
(Thermo Fisher Scientific) at 37°C with 5% CO, and were passaged
when approximately 80% confluent using Versene (Thermo Fisher
Scientific). For the generation of HSP90B1 KO in the K3 cells, a
sgRNA targeting exon 2 of HSP90BI was used. The guide sequence
AGCTGACGATGAAGTTGATG was cloned into the pSpCas9
(BB)-2A-puro vector (pX495 V2.0, Addgene), which was then intro-
duced into K3 cells by transfection with Lipofectamine 3000 (Invi-
trogen). Twenty-four hours after transfection, transfected cells
were selected by incubation with 1 pg/mL puromycin (Thermo
Fisher Scientific) in mTeSR1 cGMP PSC Maintenance Medium for
48 h. Surviving cells were grown until clones could be collected.
Genomic DNA was extracted from the clones using QuickExtract
DNA extraction solution (Epicenter), and the targeted regions
were amplified using Herculase Fusion Polymerase (Agilent). The
primers specific to the target area include the forward primer
(5’TGCACTCTTTCATCCCCACC3') and the reverse primer
(5’CTCTACTTTCCATTTAAGAATGGCT3'). Amplicons
subjected to restriction digest screening to identify clones with inser-
tion-deletion events (INDELS) and sequenced to confirm the iden-
tity of the INDELS.

were

Viral infection of iPSCs to express the pGreenZeo human insulin
differentiation reporter

The lentivirus carrying the pGreenZeo human insulin differentiation
reporter (System Bioscience,) was packaged in 293 T cells with pack-
aging vectors psPAX2 and pMD2.G in the Opti-MEM medium
(Thermo Fisher Scientific). Sixteen hours after transfection, the me-
dium was changed to StemFlex medium (Thermo Fisher Scientific),
and cells were continuously cultured for another 24 h. The superna-
tant was then collected and used to infect the hiPSC cells. The infec-
tion was repeated three times.

Exogenous expression of GRP94 in HSP90B1 KO hiPSCs by
electroporation

Two HSP90B1 deletion iPSCs, HSP90B1-KO1 and HSP90B1-KO2,
were dissociated with Versene (Thermo Fisher Scientific). Then
1 x 10° cells were resuspended in 100 pL buffer R, mixed with
20 pg of human HSP90BI expressing plasmid (VectorBuilder, vector
ID: VB900115-8943aap), and then transfected by electroporation
with two 30-s pulses at 1,050 V (Neon Transfection System, Thermo
Fisher Scientific). The transfected cells were then plated in the
StemFlex medium containing 10 pM Y-27632 ROCK inhibitor (Toc-
ris Bioscience). The expression of GRP94 was confirmed by western
blot and immunostaining.

Tri-lineage differentiation of hiPSCs

Tri-lineage differentiation of iPSCs was performed following previ-
ously described methods with some modifications.'®”” For DE dif-
ferentiation, hiPSCs were dissociated with Accutase (STEMCELL
Technologies) and treated with 3uM CHIR99021 (Selleck Chemi-
cals) and 100 ng/mL GDF8/myostatin (PeproTech) in MCDB131
medium supplemented with 0.5% BSA, 1x glutamate, 10 mM
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glucose, and 1.5 g/L sodium bicarbonate for 24 h, followed by treat-
ment with 100 ng/mL GDF8/myostatin for another 48 h. For early
mesoderm differentiation, the dissociated hiPSCs were cultured in
RPMI1640 containing B27 minus insulin (Gibco) and 6 puM
CHIR99021 (Selleckchem) for 48 h. The StemXVivo Ectoderm Kit
(R&D Systems) was used to induce hiPSCs differentiation according
to the manufacturer’s instructions for ectoderm differentiation.
Differentiated cells were then collected for flow cytometry analysis,
RNA isolation, or fixed with 4% paraformaldehyde (PFA) for immu-
nocytochemical analysis.

p cell differentiation from hiPSCs

B cell differentiation was performed as described previously with some
modifications.'®'? In brief, the dissociated hiPSCs were seeded at a
density of 0.6 x 10° cells/well in 12-well plates with Stemflex medium
containing 10 pM ROCK inhibitor, and differentiation was induced
the following day. In stage 1, cells were induced for DE differentiation,
as described above. In stage 2, cells were cultured in MCDB131 me-
dium supplemented with 0.5% BSA, 1.5 g/L sodium bicarbonate 1x
glutamate, 10 mM glucose, and 50 ng/mL recombinant human
FGF7 (Peprotech) for 2 days. In stage 3, cells were cultured in
MCDBI131 medium supplemented with 2% BSA, 2.5 g/L sodium bi-
carbonate 1x glutamate, 10 mM glucose, 50 ng/mL FGF7, 0.25 mM
vitamin C (STEMCELL Technology), 0.25 pM SANTI(Sigma),
1 pM retinoic acid (RA; Sigma), 100 nM LDN193189 (LDN; Stem-
gent), 1:100 ITS-X (Life Technology), and 200 nM TPB (EMD Milli-
pore) for 2 days. In stage 4, cells were cultured in MCDB131 supple-
mented with 2% BSA, 2.5 g/L sodium bicarbonate, 1x glutamate,
10 mM glucose, 2 ng/mL FGF7, 0.25 mM vitamin C, 0.25 pM
SANT1, 0.1 pM RA, 200 nM LDN, 1:100 ITS-X, and 100 nM TPB
for 3 days. In stage 5, spheroids were cultured in MCDBI131 supple-
mented with 2% BSA, 1.5 g/L sodium bicarbonate, 1x glutamate,
20 mM glucose, 0.25 pM SANT1, 0.05 pM RA, 100 nM LDN, 1:100
ITS-X, 1 uM 3,3’ ,5-triiodo-1-thyronine sodium salt (T3; Sigma),
5 pM ALKS5 inhibitor II (Enzo Life Sciences), 5 pM zinc sulfate hep-
tahydrate (Sigma), and 10 pg/mL heparin for 2 days. In stage 6, spher-
oids were cultured in MCDB131 supplemented with 2% BSA, 1.5 g/L
sodium bicarbonate, 1x glutamate, 20 mM glucose, 100 nM LDN,
1:100 ITS-X, 1 pM T3, 10 pM ALKS5 inhibitor II, 100 nM y-secretase
inhibitor (Millipore), 10 pM zinc sulfate heptahydrate, and 10 pg/mL
heparin for 6 days. In stage 7, spheroids were cultured in MCDB131
supplemented with 2% BSA, 1.5 g/L sodium bicarbonate, 1x gluta-
mate, 20 mM glucose, 100 nM LDN, 1:100 ITS-X, 1 pM T3, 10 pM
ALKS5 inhibitor II, 10 pM zinc sulfate heptahydrate, 1 mM N-acetyl
cysteine (N-Cys, Sigma), 10 pM Trolox (EMD), 2 pM R428
(SelleckChem), and10 pg/mL heparin for 6 days.

Immunofluorescence staining and confocal microscopy

analysis

For immunofluorescent staining of cells cultured in 2D system, cells
were fixed with 4% PFA for 10 min, permeabilized with 0.3% Triton
X- for 10 min, and then blocked with 2% BSA in PBS for 1 h. Cells
were then incubated with primary antibodies against OCT4 (see
Table S1 for detailed information), SOX2, NANOG, FOXA2,
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f-catenin, SOX17, TBXT, OTX2, and GRP94, at 4°C overnight. Sam-
ples were then incubated with fluorescent conjugated secondary an-
tibodies (Invitrogen) for 1 h at room temperature. Cells were washed
and mounted onto glass slides with Fluoroshield mounting medium
(Sigma-Aldrich). Confocal images were captured with a Leica SP5
confocal microscope. For cells cultured in 3D, clusters were
embedded in optimal cutting temperature compound (OCT)
freezing media and frozen at —80°C. Serial sections (5 pm thick
each) were collected from each cluster at 25 pm apart. The slides
were fixed with 4% PFA for 10 min, treated with 3% H,O, for
10 min, and then incubated with primary and secondary antibodies
as described above.

Bulk RNA-seq analysis

Total RNA was extracted using the RNeasy Micro Kit (Qiagen) and
stored at —80°C. The concentration and purity of all samples were
measured. Once initial quality testing was passed, samples were
sent for library preparation, gene expression analysis, and quantifica-
tion by Novogene. Significantly changed genes were analyzed
by Metascape (Metascape data: https://metascape.org/gp/index.
html#/main/stepl), GO, and the KEGG analyses.

Flow cytometry analysis

Cells were dissociated using Accutase, then fixation and permeabili-
zation with eBioscience Intracellular Fixation & Permeabilization
Buffer Set (Thermo Fisher Scientific) for 30 min on ice. Samples
were incubated with phycoerythrin (PE)-conjugated anti-human
FOXA2 (BD Biosciences, Table S1), PerCP-Cy 5.5-conjugated anti-
human SOX17 (BD Biosciences), PE-conjugated anti-Brachyury
rabbit mAb (Cell Signaling Technology), and PE-conjugated anti-
human OTX2 (Novus Biologicals) antibodies in eBioscience Perme-
abilization Buffer (Thermo Fisher Scientific) at room temperature
for 25 min. Flow cytometry was analyzed on a BD LSRFortessa
Cell Analyzer (BD Biosciences).

Cell apoptosis analysis

Cell death was analyzed using the APC Annexin V Apoptosis Detec-
tion Kit with propidium iodide (PI, BioLegend). Briefly, 1 x 10°
dissociated cells were washed and then incubated with 5 pL of An-
nexin V and 10 pL of PI in 100 pL of Annexin V binding buffer
for 15 min at room temperature in the dark. Then, 400 pL of binding
buffer was added to each tube for flow cytometry analysis.

RNA isolation and PCR analysis

Total RNA was isolated from cells using TRIzol reagent (Invitrogen),
followed by reverse transcription using M-MLV reverse transcrip-
tase and olig (dT)18 primers (Thermo Fisher Scientific). Quantitative
PCR was conducted using SYBR Green I (Thermo Fisher Scientific)
on a CFX96 Real-Time PCR Detection System (Bio-Rad). The ther-
mal profile for gPCR included an initial denaturation step at 95°C for
10 min, followed by 40 cycles of denaturation at 95°C for 15 s and
annealing/extension at 60°C for 1 min. Relative quantitation was
performed by normalizing the results to 185 rRNA expression.
PCR primer sequences are listed in Table S2.

Protein extraction and western blot analysis

Cell pellets stored at —80°C were thawed and re-suspended in lysis
buffer (Thermo Fisher Scientific). Protein concentration was
measured using a BCA assay (Thermo Fisher Scientific). Twenty mi-
crograms of protein was separated by SDS-PAGE, transferred to a
PVDF membrane, and incubated with antibodies against OCT4
(see Table SI for antibody information), SOX2, NANOG, GRP9%4,
GAPDH, p-catenin, IREla, PERK, p-smad 2, smad2/3, p-tubulin,
and P-actin separately, followed by incubation with horseradish
peroxidase-conjugated secondary antibodies (Cell Signaling Tech-
nology). Signals were visualized using an ECL detection kit (Thermo
Fisher Scientific).

Statistical analysis

Data are presented as mean + SD. Comparisons between the two
groups were performed using Student’s t test. Comparisons between
multiple groups were performed using one-way ANOVA with post-
hoc correction. Statistical significance was defined as a p value of less
than 0.05.
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